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Module for Atrial Fibrillation Detection on a Smartphone Silvia

Abstract

This thesis aims to develop a solution that allows a Deep Learning (DL) Keras model to
be able to work and make predictions based on Electrocardiogram (ECG) measurements
on a smartphone. This enables the implementation of continuous AF monitoring which
can lessen the risk of silent AF.

There are numerous studies that have developed their own ways of integrating AF
monitoring system on a smartphone such as KardiaMobile by AliveCor and ECG for
Apple Watch by Apple. However, none of them have implemented a feature that
continuously monitor for AF locally.

The thesis project was able to successfully build a solution by converting the Keras
model into a TensorFlow JavaScript Graph Model (TFJSGM), within the React Native
(RN) development environment. Prediction accuracy is also shown to be on par with
Keras’s.

ii



Silvia Module for Atrial Fibrillation Detection on a Smartphone

Acknowledgements

I would like to first and foremost thank my supervisor, Dr Peter Brown for his utmost
guidance, and support throughout 2022. Software engineers Stephen Ong, Wincent
Winarko, and Zhuoying Li, for providing numerous technical support and resources
on mobile development. Dr Reza Argha for his expertise in machine learning. My
assessor Dr Nigel Lovell, project manager Brice Lenfant, and other thesis students who
participated in the weekly meetings. Finally, to my family and friends overseas and in
Australia for their mental and emotional support.

iii



Module for Atrial Fibrillation Detection on a Smartphone Silvia

Abbreviations

AF Atrial Fibrillation
API Application Programming Interface
AIT Austrian Institute of Technology
DL Deep Learning
NSR Normal Sinus Rhythm
OA Other Arrhythmia
TN Too Noisy
AF Atrial Fibrillation
DL Deep Learning
ECG Electrocardiogram
GSBmE Graduate School of Biomedical Engineering
HDL Hybrid Deep Learning
JS JavaScript
ML Machine Learning
NSW New South Wales
RN React Native
TCC TeleClinical Care
TF TensorFlow
TFJS TensorFlow JavaScript
TFJSGM TensorFlow JavaScript Graph Model
TFJSRN TensorFlow JavaScript React Native
TFLite TensorFlow Lite
UNSW University of New South Wales

iv



Silvia Module for Atrial Fibrillation Detection on a Smartphone

Contents

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 4

2.1 Similar Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 AliveCor KardiaMobile and Kardia App . . . . . . . . . . . . . . 4

2.1.2 Apple Watch and ECG App . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Comparison of PPG and single-lead ECG to Detect AF . . . . . 6

2.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Pre-Trained DL Model that Assesses AF . . . . . . . . . . . . . . 6

2.2.2 TeleClinical Care (TCC) - Jadeite . . . . . . . . . . . . . . . . . 7

3 Methodology 10

3.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 User Stories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Non-Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Agile Kanban . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 Module Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

v



Module for Atrial Fibrillation Detection on a Smartphone Silvia

3.5.1 React Native . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5.2 TensorFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5.3 TensorFlow JavaScript . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5.4 TensorFlow JavaScript React Native . . . . . . . . . . . . . . . . 14

3.6 Other Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6.1 TensorFlow Lite . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6.2 Azure Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Implementation 15

4.1 AF Module Development . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Model Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.2 Loading the Model . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.3 Signal Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.4 Process, Predict, Result . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Continuous AF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Anticipated Input Type . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.2 Continuous ECG Simulation . . . . . . . . . . . . . . . . . . . . 23

4.3 Other Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.1 TFLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.2 Azure Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Evaluation 26

5.1 Prediction Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1.1 Accuracy Comparison . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1.2 Classification Comparison . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Why TFJS over TFLite . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vi



Silvia Module for Atrial Fibrillation Detection on a Smartphone

5.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4.1 Compatibility Testing . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4.2 Usability Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5 AF Module Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.5.1 Home Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.5.2 Detector Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.5.3 Records Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5.4 Notifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Conclusion 35

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Bibliography 37

Appendix 41

A.1 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.2 Kanban Board: Trello . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vii



Module for Atrial Fibrillation Detection on a Smartphone Silvia

List of Figures

1.1 Deep Learning in Google Translate . . . . . . . . . . . . . . . . . . . . . 2

2.1 F1 scores of pre-trained model versus re-trained model . . . . . . . . . . 7

2.2 TCC – Jadeite app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Thesis project timeline Gantt chart . . . . . . . . . . . . . . . . . . . . . 13

4.1 Keras to TFJS conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Loading of graph model . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Model selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.4 Filteration and normalisation process . . . . . . . . . . . . . . . . . . . . 18

4.5 Signal filtration output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.6 Flow of processing, predicting, and outputting . . . . . . . . . . . . . . . 20

4.7 Processing in React Native using TFJS . . . . . . . . . . . . . . . . . . 20

4.8 Predicting in React Native using TFJS . . . . . . . . . . . . . . . . . . . 21

4.9 Processing Result in React Native . . . . . . . . . . . . . . . . . . . . . 22

4.10 Input from Vlepis patch . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.11 Anticipated input type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.12 Keras to TFLite conversion . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.13 Azure Functions flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

viii



Silvia Module for Atrial Fibrillation Detection on a Smartphone

5.1 Prediction probability of sample 0008-2 . . . . . . . . . . . . . . . . . . 27

5.2 Home screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 AF home card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 Detector screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.5 Detector overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.6 Continuous AF detector toggle . . . . . . . . . . . . . . . . . . . . . . . 32

5.7 Detector records screen . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.8 Detector records filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.9 Colour coded results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.10 Notification feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A.1 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.2 Using Trello for Kanban . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

ix



Module for Atrial Fibrillation Detection on a Smartphone Silvia

List of Tables

3.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 User Stories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Non-Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . 11

5.1 Expected results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Prediction results and reliability . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Benchmark comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

x



Silvia Module for Atrial Fibrillation Detection on a Smartphone

Chapter 1

Introduction

Atrial Fibrillation (AF) is one of the most common types of arrhythmias, which means

irregular heartbeat or improper beating of the heart [FCG08]. AF increases one’s

risk to stroke and heart failure due to blood clotting in the heart [SSS14]. Given

that AF is often asymptomatic [BBC+17], in other words, shows no symptoms, it

may result in the risk of having it being underdiagnosed. Frequent monitoring via

Electrocardiogram (ECG) may help doctors in aiding patients with the right medication

or treatment [GKD+16, PTC+03] in the right time.

ECG is a medical recording of the heart’s electrical signals [SY22]. It is non-invasive,

safe, and the least costly way of measuring the heart’s contractions. In this thesis

project, the ECG measurement will be fed into a Deep Learning (DL) algorithm.

Deep Learning is a subset of machine learning that lets a machine learn from represen-

tation of data with multiple layers [LBH15]. To put it simply, if a picture of a cat were

to be fed into a machine learning algorithm, in order to be able to determine which

are the whiskers, ears, eyes, etc., the machine learning algorithm references back to

what was extracted by human. On the other hand, a DL algorithm is able to make

the prediction(s) by itself. Another example can be seen within Google Translate. The

sentence “Cuaca hari ini sangat cerah” in Bahasa Indonesia if directly translated to

English without DL will be “Weather today is very bright”, which contextually wrong.

1
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However, Google’s DL algorithm is able to translate it to “The weather today is very

sunny” (as seen in Figure 1.1) which is a more accurate translation.

Figure 1.1: Deep Learning in Google Translate

1.1 Problem Statement

There is currently no existing AF detection apps that supports continuous monitoring

for AF on a smartphone. Being able to continuously monitor a patient’s heart activity

is crucial as it: [CCP12, VLK+22]

� Aids in detecting silent AF

� Helps in early diagnosis of AF

� Assists clinicians in providing early interventions via tailored treatment or ther-

apies

Furthermore, existing AF detectors on smartphones relies on a backend. This method

of detection requires a connection for it to be able to run and output a prediction. In

a hypothetical scenario where a multitude amount of patients enables the continuous

AF detection feature, there might be a possibility where the server can slow down. A

server slow down may also cause a delay on a patient’s detected outcome, which for

AF patients are critical.

1.2 Aim

This thesis project aims to solve the problem of AF detection that server reliance to

run predictions. The thesis’s goal is to integrate an app module that allows AF to be

2
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detected locally by the smartphone itself. Being able to screen for AF independently

without relying on a server enables the implementation for continuous monitoring of

ECG measurements.

3
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Chapter 2

Background

This section covers the background, and literature reviews on: (1)Similar works that

are able to detect AF on a portable device. (2)Prior works which plays an important

role in the development process of the module.

2.1 Similar Work

Detecting AF on a smartphone have been done previously with success. This section will

discuss on those applications, how accurate it is according to researchers, its impacts,

and what improvements can be done.

2.1.1 AliveCor KardiaMobile and Kardia App

KardiaMobile is a portable ECG device made by AliveCor. In comparison to the

traditional way of getting ECG measurements, AliveCor was able to develop an ECG

measuring device that only requires patients to place their fingers for 30 seconds on

KardiaMobile, which afterwards sends its recording to their cross-platformed Kardia

app in a smartphone device [MC21].

4



Silvia Module for Atrial Fibrillation Detection on a Smartphone

A study [WKE+20] have experimented in using the traditional ECG and the AliveCor

KardiaMobile on 99 patients. Results from this experimentation shows that AliveCor’s

ECG monitor was able to have a highly accurate detection of AF, yielding a sensitivity

(correctly identifying patients with AF [SHT20]) of 100% and specificity (correctly

identifying patients without AF [SHT20]) of 94%.

There are, however, a few drawbacks to KardiaMobile and Kardia. In the app, patients

may need to pay a fee if they were to request for a clinician’s input of the ECG

measurement they took [Ali21]. Patients are also limited to their latest record and are

only able to view the records prior to that if they pay a subscription fee [Ali17]. Finally

and most importantly, it does not support continuous monitoring [Slo18], a feature that

this thesis project aims to work towards to.

2.1.2 Apple Watch and ECG App

The Apple Watch have been studied in the Apple Heart Study, in where the Apple

Watch demonstrates to have a high positive predictive value of 0.84 and confidence

interval (value that accurately reflects 419, 297 participants [CE09]) of 95%from its

electrodes that generates single-lead ECG to detect AF [PMH+19].

The ECG app is easy to use, the readings from the sensors are reliable, and the watch

support continuous heart rate monitoring via their optical light sensor [Jov15], not

to be confused with continuous ECG monitoring for-which the watch does not sup-

port [Jov15], which again, is a feature that this thesis project aims to work on. On

top of that, a patient must be of the age 22 and above to be able to use the ECG

app [KKM+22] and is only compatible with Apple devices (not cross-platformed) [App22].

This thesis project, however, aims to cater to more patients on more than one platform,

and not limiting to a certain age.

5
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2.1.3 Comparison of PPG and single-lead ECG to Detect AF

The study aims to compare the diagnostic performance of photoplethysmogram (PPG)

and single-lead ECG’s proprietary smartphone apps’ AF detection algorithm. Results

from this study demonstrated that performance from both are equivalent. Where the

specificity, sensitivity, accuracy of PPG are respectively, 94.1%, 97.6%, and 96.4%. On

the other hand, ECG’s are, 91.1%, 95.7%, and 94.1% [MBR+21].

Although the research does not correlate much with the current thesis project, the

future works for this thesis does. The interchangeability of PPG and single-lead ECG

means that if a PPG algorithm were to be made, it can be a good area to research on,

and potentially another module to be built on top of this AF module. That being said,

the study too does not implement continuous AF monitoring, which this thesis aims to

build.

2.2 Prior Work

The AF detection module that will be made for this thesis project, will leverage from

prior but still ongoing works that was a result for the combined efforts of researchers,

students, and software engineers from UNSW and other universities. How the AF

detection module can benefit from these findings will also be stated.

2.2.1 Pre-Trained DL Model that Assesses AF

A group of researchers and medical students have examined ECG classification algo-

rithms and its arrhythmia classification accuracy. The algorithms used in this study are

the Hybrid deep-learning (HDL) based algorithm, where the model is able to classify

ECG recordings into four classes, one of them being AF; and genetic algorithm, that

maximizes the average of F1-scores (predictive performance) which then will be used

to select an optimal subset of classifiers to ensemble the classification for the DL AF

detection algorithm [AA+].

6
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Figure 2.1: F1 scores of pre-trained model versus re-trained model [AA+]

As shown in Figure 2.1, by applying the transfer learning strategy, which is a process

where a model for a problem is reused for another relating problem [WKW16], the

study was able to increase the F1 score for both HDL and DL models from 0.884 0.937

to 0.972 0.974, outperforming conventional ECG classifiers.

By having more accurate predictions and lesser false positives, the AF detection module

for smartphones may aid doctors in giving appropriate diagnosis and treatment for the

patient in need.

2.2.2 TeleClinical Care (TCC) - Jadeite

TCC – Jadeite is an app designed in collaboration between the Graduate School of

Biomedical Engineering (GSBmE) at UNSW Sydney, New South Wales (NSW) Gov-

ernment Health, and Austrian Institute of Technology (AIT). The app helps hospitals

to monitor a patient’s condition at home.

Patients are able to share their information simply by inputting information such as

their weight, blood pressure, and oxygen saturation into the TCC – Jadeite app. These

measurements are gathered via the weight scales, blood pressure monitor, and pulse

oximeter machine that was given to the patient upon visiting the hospital. Patients

will receive daily notifications to enter their measurements, and in situations where

patients might forget to do so, a staff from the hospital may call the patient to check

7
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on their well-being. Figure 2.2 shows the layout of the app.

By adding in an AF detection module for the TCC – Jadeite app, both patients and

health workers will be able to communicate on possible detected AF, thus aiding in

better prescription and treatment for the patient.

8
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Figure 2.2: TCC – Jadeite app: home tab (upper left), review tab (upper right),
notifications tab (lower left), more tab (lower right)

9
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Chapter 3

Methodology

3.1 Functional Requirements

As shown in Figure 3.1, the requirements shown is of that enables a user that wants to

use the module’s features to be ensured that all crucial functionalities are covered.

Table 3.1: Functional Requirements

No. Description

FR1 User should be able to toggle continuous AF detection module on and off

FR1 User should be able to view all past records of their ECG readings result

FR1 User should be able to filter past records of their ECG readings result

FR2 Module should notify user for detected AF

FR3 Module should be able to use DL model to detect for AF in the ECG recording

FR4 Module should be able to continuously monitor ECG measurement

FR5 Module should be able to detect possible AF from ECG readings

3.1.1 User Stories

Figure 3.2 shows a patient-centric view of the app. Features are told in the form of

what the users want, and what can that feature benefit into.

10
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Table 3.2: User Stories

No. As
a/an

I want to So that

P1 Patient Be able to monitor ECG continu-
ously

I can be notified of a possible silent
AF

P2 Patient Be able to see an overview of the
ECG result upon opening the app

I can take a look of my current sta-
tus whenever I want to

P3 Patient Be notified for possible detected
AF

I know when to take precaution

P4 Patient Be able to check past records of
ECG readings result

I know when was the last time I
have possible irregularities for AF

P5 Patient Be able to filter my past records of
ECG readings result

I can monitor the progression of
my condition/symptoms

3.2 Non-Functional Requirements

The non-functional requirements are the desired state the module should be in. As

shown in Figure 3.3, criteria involves user interface, experience, privacy, app perfor-

mance, documentation, and testing.

Table 3.3: Non-Functional Requirements

No. Description

NFR1 Consistent user interface and user experience. Allowing first time users to easily,
and readily access the module

NFR2 User privacy. User’s detection outcome to only be known by the user itself unless
the user shares

NFR3 Acceptable performance. Allowing optimal performance of the whole prediction
process.

NFR4 Well-documented. Enabling future developers to easily understand the code, and
structure.

NFR5 Well-tested. Allowing the module to not be riddled with messy bugs, and so that
module works as intended.

11
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3.3 Agile Kanban

Agile is an iterative approach to project management and software development, so

instead of doing big things at once, agile allows developers to work in small increments.

In Agile Kanban, tasks will be divided into five sections: backlog, to put ideas and

features that may or may not be implemented into the project; to do, to put features

from backlog that are planned to be worked on; in progress, the features that are

being worked on; testing, a working feature that is ready and waiting to be tested;

done, where the feature is working, tested, and ready for deployment. Agile Kanban’s

flexibility with due dates, modifications, and accommodation to varying priorities tasks,

makes it great for solo developers.

3.4 Timeline

The Figure 3.1 shows the expected progression of the thesis. By the end of the timeline,

it is expected for the AF module to be implemented into TCC – Jadeite. As well as

for the DL model to be able to fully function locally in a smartphone with good AF

prediction accuracy.

3.5 Module Technologies

This section covers the main technologies used during the development of the AF mod-

ule.

3.5.1 React Native

React Native (RN) is a framework used to develop multi-platformed apps [Pla22], which

in this case is useful for this thesis project that aims to build an app available for iOS

and Android.

12
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Figure 3.1: Thesis project timeline Gantt chart

3.5.2 TensorFlow

TensorFlow (TF) is a machine learning software library that is used primarily for deep

learning applications [AAB+15]. In this case, the library has been previously used to

develop an algorithm that has produced the DL model [AA+] that will be used in the

conversion.

3.5.3 TensorFlow JavaScript

TensorFlow JavaScript (TFJS) is a JavaScript library that enables ML capabilities [AAB+15,

STA+19]. These features includes developing ML, running models, and retraining mod-

els. Although web-based, it is interlinked to React Native extension of it.

13
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3.5.4 TensorFlow JavaScript React Native

TFJS React Native (TFJSRN) is an extension of TFJS that allows bundling of re-

source [AAB+15, Ass20]. This would be further covered in Section 4.1.4.

3.6 Other Technologies

This section covers the other technologies used during experimentation via a different

approach of developing the AF module.

3.6.1 TensorFlow Lite

TensorFlow Lite (TFLite) is a cross-platform deep learning framework where the main

usage is to convert a pre-trained TF model into a TFLite model for the purpose of

speed and storage optimization [AAB+15, Shu20].

3.6.2 Azure Functions

Azure Functions is Microsoft’s serverless computing service, where machine resources

are allocated dynamically [Mic22, CSP+15]. It triggers upon incoming request and cuts

down on resources when idle for some time.

14
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Chapter 4

Implementation

4.1 AF Module Development

4.1.1 Model Conversion

Figure 4.1: Keras to TFJS conversion

For TFJS to be able to make a prediction, a model.js and weights.bin of type bin file

is needed (shown in Figure 4.1). Thus, for the conversion process, the tfjs-convertor [Ten22c]

package is used. In the upcoming conversion, two output formats will be given: Graph

Model, and Layers Model. For this project, Graph Model is chosen as Layers Model is

not compatible with the custom classes defined in the Keras model [AA+]. Steps for

conversion via the wizard are as follows: [Tenc]

1. In the command line run tensorflowjs_wizard

2. Type in the path to the eKeras file (i.e,. score.h5)
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3. Select Keras (HDF5) as input format

4. Select Tensorflow.js Graph Model as output format

5. Select No compression (Higher accuracy) for compression type

6. Press enter (do not modify the value) when prompted to enter shard size

7. Press enter when prompted to enter metadata

8. Type in output directory

9. Once finished, go to the output directory

10. In the command line type cat group1-shard1of33.bin... > weights.bin to

merge all weights into a single file.

4.1.2 Loading the Model

Upon launching the app, the TFJS model should be loaded right away. This is so that

the app does not need to load the model repeatedly before each prediction. The loaded

model is then set, and using the selector, it can now be selected from anywhere within

the app. Figure 4.2 shows the code to load the model, and Figure 4.3 shows the variable

that allows the model value to be retrieved.

Figure 4.2: Loading of graph model
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Figure 4.3: Model selector

4.1.3 Signal Filtering

Python Dependencies

The pre-processing procedure relies on some python dependencies with no equivalent

alternative in React Native. Majority of it being that helps in filtering and normalising

the signal. The python dependencies used are as follows:

� numpy → a Python library for scientific computing [HMvdW+20]

� scipy.signal → a toolbox for signal processing [VGO+20]

– resample→ the process of changing an existing signal’s sampling rate [com]

– butter → a type of filter that processes signals in a way that flattens the

frequency to as flat as possible [But30, com]

– sosfiltfilt → a forward-backward digital filter using cascaded second-

order sections [com]

Filtering and Normalisation

Within the python environment, the process of filtering, and normalising the signal will

occur. In the case of Figure 4.4, it uses the Butterworth filter followed by a forward-

backward digital filter, and finally normalised. Once everything is done, file is saved.

Output

The final output of the file after the filtration, can be in seen in the following Figure 4.5.

The raw sample file of 7500 lines has been significantly reduced to just 3000 lines, a
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Figure 4.4: Filteration and normalisation process

60% decrease. However, it can also be observed that file size has increased 185.496%

from 26.2 kilobytes to 74.9 kilobytes.

Figure 4.5: Signal filtration output. Before(left), and after(right)
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4.1.4 Process, Predict, Result

React Native Dependencies

� @tensorflow/tfjs → is a library that enables ML development in JS [Ten22a]

– expandDims → is an operation that is adds an outer dimension to a single

element [Tena]

– squeeze → is an operation that discards dimensions of size one [Tena]

– arraySync → is an operation that returns a tensor data as nested ar-

ray [Tena]

– argMax → is an operation that returns a tensor’s set of element’s maximum

elements’ indices [Tena]

– max → is an operation that returns a tensor’s maximum value across its

dimension [Tena]

– loadGraphModel→ is an operation that loads a graph model given the path

of the model definition [Tena, Ten22a]

� @tensorflow/tfjs-react-native→ is an extension of TFJS that provides GPU

accelerated execution of TFJS [Tena, Ten22a, Ten22b].

– bundleResourceIO → is a IOHandler that supports loading of statically

bundled models [Tenb]

Flow

Inside the app’s RN environment, the measurements will undergo a final pre-processing

procedure. Once done, that output will then be sent to be predicted using the TFJSGM.

Afterwards, the prediction results will be compared to a threshold that determines

whether the outcome is reliable or unreliable.

19



Module for Atrial Fibrillation Detection on a Smartphone Silvia

Figure 4.6: Flow of processing, predicting, and outputting

Process

Figure 4.7 shows the final pre-processing step that takes place in RN. This function

takes in a parameter of ECG measurements. Using the TFJS library, the procedure

expands the dimension twice, first on axis 1, and again on axis 0. Successful expansion

returns a list of newly expanded array of ECG signals.

Figure 4.7: Processing in React Native using TFJS

20



Silvia Module for Atrial Fibrillation Detection on a Smartphone

Predict

As observed in Figure 4.8 This procedure calls TFJS’s predict function using the

TFJSGM, and the list of ECG signals from Section 4.1.4. Once the prediction is

made, the output will be returned as type tensor.

Figure 4.8: Predicting in React Native using TFJS

Result

Prior to this procedure, the tensor from Section 4.1.4, will be converted into a 1 dimen-

sional array using the code result.as1D() which is another method that is provided

by the TFJS library. Using the new 1D list, this procedure sets a value to prediction,

and predictionProb. With those values, it will be compared with the defined threshold,

thresh. If any of the value were to be out of the threshold’s range, reject the reading.

Else, set reject as 0, which indicates that reading is reliable.

4.2 Continuous AF

4.2.1 Anticipated Input Type

To ensure compatibility with the continuous AF module, input type had to be antici-

pated. Figure 4.10 are screenshots taken from another thesis student from UNSW who
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Figure 4.9: Processing Result in React Native

worked on integrating a continuous ECG monitoring device [Tad22]. Retrieving the

details from Figure 4.10, the calculated anticipated input average across 11 signals is

20 miliseconds per signal. It can also be seen in Figure 4.11, that the device outputs a

Figure 4.10: Input from Vlepis patch [Tad22]

string value that contains a number. However, the model accepts integers. Hence, the

value should be converted into integers in the process.
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Figure 4.11: Anticipated input type [Tad22]

4.2.2 Continuous ECG Simulation

Leveraging from the information from the previous section, an attempt is then made to

create a continuous ECG simulation. In order to simulate a continuous ECG scenario,

a custom function has been created. Algorithm 1 describes the procedure of how the

aforementioned function works.

Algorithm 1: Continuous ECG Simulation

Input: fSample: Sample file, rInterval: ECG monitoring device reading

speed(i.e., 30 milliseconds)

Output: List of ECG signal numbers that is read within pre-defined timer

1 Initialise EmptyList of type numbers

2 SampleECGs← fSample // list of ECG signals of type numbers

3 while timer ≥ 0 do

4 repeat every rInterval

5 append SampleECGs’s value at index i into EmptyList

6 i← i+ 1

7 until rInterval = 0

/* pre-defined timer can be of any reasonable value. i.e., 30

seconds */

8 if timer ≤ 0 then

9 run prediction with populated EmptyList

In Lines 1, and 2, a new empty list called EmptyList is created to store the data from

SampleECGs. It is also observed that SampleECGs initialises its value to a list of

ECG signals called fSample.

In Lines 3 up to 7, a loop occurs while timer (this project sets timer to 30 seconds) is
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not less than 0. Within that loop, for every rInterval (this project sets rInterval to 30

milliseconds), the value at SampleECG’s index position i is appended into EmptyList.

Once that is done, i is increased by 1 so to move to the next index.

In Lines 8, and 9, when the timer reaches less than 0. Using the populated EmptyList

as parameter, run the prediction function.

4.3 Other Experimentation

This section covers other experimentation that was done. The reason for this section

is to compare it against TFJS.

4.3.1 TFLite

Figure 4.12: Keras to TFLite conversion

Just like TFJS, the Keras model can be converted into TFLite. The result of this

conversion is that the model became 67% smaller in size. The difference is however, it

only outputs as one single file, as opposed to a two parts namely model, and weights.

This model and script is then deployed unto Azure Functions.

4.3.2 Azure Functions

Azure Functions is used to deploy the TFLite model, and the prediction script. HTTP

trigger function is created, which works similarly to an API. By sending a HTTP

request, in the form of a query string, a header, or json body; it triggers the prediction

function, and returns the predicted outcome of the ECG readings.
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Figure 4.13: Azure Functions flow
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Chapter 5

Evaluation

5.1 Prediction Results

5.1.1 Accuracy Comparison

Sample file 0008-2 is tested across 3 models. It is of type .txt. For TFJS, it is replaced

with p_0008-2 instead due to complications discussed in Chapter 4. Figure 5.1 shows

the prediction outcomes all across the models.

The structure of the prediction output is that, it is a list of numbers which contains 4

values. Each value indicates the probability of the prediction, in which the higher it is,

the more likely it is to be the predicted outcome. In order from left to right, the value

is the probability of: AF, NSR, OA, and TN.

It can be seen that in Figure 5.1, the prediction probability of all models are very

similar to each other. For example the NSR probability rate; the outcome from TFJS

and TFLite differs with that of the Keras model only by a fourteen hundred-millionths.

Thus, the prediction accuracy of all models are highly similar.
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Figure 5.1: Prediction probability of sample 0008-2. In order from top to bottom:
TFJS, TFLite, Keras model.

5.1.2 Classification Comparison

11 sample files are tested with 3 different models. Sample files are of types .txt, and

.json. As for the models tested, it will be between TF(Keras), TFLite, and TFJSGM.

Figure 5.1 shows a list of sample files and its expected results gathered by a group of

researchers [AA+]; it is however, not a result predicative from any of the models.

Table 5.1: Expected results

Sample Expected Results

p 0006-6 NSR
p 0007-1 NSR
p 0007-1 NSR
p 0007-1 NSR
p 0008-1 NSR
p 0008-2 NSR
p 0008-3 NSR
p 0009-1 OA
p 0009-2 AF
p 0009-3 AF
p sample AF

On the other hand, Figure 5.2 shows that there are some outcomes that are differs from

what is expected. But those that are wrong are also the same all across all models. The

results that do not match with the expected ones are namely p_0008-3, and p_0001.
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Table 5.2: Prediction results and reliability

Sample Results
(TF)

Results
(TFLite)

Results
(TFJS)

Reliability
(TF)

Reliability
(TFLite)

Reliability
(TFJS)

p 0006-6 NSR NSR NSR Reliable Reliable Reliable
p 0007-1 NSR NSR NSR Reliable Reliable Reliable
p 0007-1 NSR NSR NSR Reliable Reliable Reliable
p 0007-1 NSR NSR NSR Reliable Reliable Reliable
p 0008-1 NSR NSR NSR Unreliable Unreliable Unreliable
p 0008-2 NSR NSR NSR Reliable Reliable Reliable
p 0008-3 OA OA OA Unreliable Unreliable Unreliable
p 0009-1 AF AF AF Reliable Reliable Reliable
p 0009-2 AF AF AF Reliable Reliable Reliable
p 0009-3 AF AF AF Reliable Reliable Reliable
p sample AF AF AF Reliable Reliable Reliable

5.2 Benchmarks

Table 5.3: Benchmark comparison

Model Platform Average time per predic-
tion (seconds)

TF Apple M1 Pro machine 25.4
TFLite Apple M1 Pro machine 2.581
TFLite Azure Functions 3.439
TFJS iOS Simulator in Apple M1 Pro machine 17.86

As shown in Figure 5.3, the Keras model averages at 25.4 seconds per prediction.

TFLite model averages at 2.581 seconds per prediction, which is 89.84% faster than

the Keras model. TFLite model deployed on Azure averages at 3.439 seconds per

prediction, which about 24.95% slower than TFLite model on a local machine, but still

86.46% faster than the Keras model. Finally, the TFJSGM averages at 17.86 seconds

per prediction, which is about 29.69% faster than the Keras model, but 80% slower

than TFLite deployed on Azure.
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5.3 Why TFJS over TFLite

There are a couple of reasons to why TFJS is chosen over TFLite for this thesis project.

Firstly, TFLite does not work locally in the mobile environment. For TFlite to work,

the model and prediction code needs to be deployed on the cloud. In a previous

experiment, this was done through Azure Functions. However, since the goal is to have

the predictions to be done continuously, this may result a large amount of data traffic

between the app and the cloud.

It is estimated that data being sent may range between ±75 to ±100 kilobytes. This

only accounts for data sent from the app to the cloud, but not the other way around.

So, if for example, 85 kilobytes of data are sent every minute, it may accumulate to

122.4 megabytes. Multiply that with 30 days, it can reach up to 3.67 gigabytes of data

per month.

Hence, even though TFLite is faster, TFJS is picked as it allows more accessibility.

This means that predictions can be made without an internet connection. Thus, there

will be lesser risk of having a silent Atrial Fibrillation going undetected.

5.4 Testing

5.4.1 Compatibility Testing

The app initially is tested to be working on iOS and Android OS. However, after due

to expo compatibility issues, the current app only works on iOS.

5.4.2 Usability Testing

The app was presented and reviewed at various stages by peers. Feedback given was

put to use to improve and appropriate modifications are applied to the app.
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5.5 AF Module Results

5.5.1 Home Screen

Figure 5.2: Home screen

AF Card

Upon entering the app, a home screen (see Figure 5.2) with various cards are displayed.

One of them is the AF card, as seen in Figure 5.3. The AF card has a Start button

that when is tapped will route the user to the detector screen (see Section 5.5.2).

Figure 5.3: AF home card
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5.5.2 Detector Screen

Overview

In the detector screen (see Figure 5.4), user is greeted with an overview of the latest

detection, as seen in Figure 5.5. The overview contains 4 values:

� Status of the detector, whether it’s active or idle

� Latest detected result from the user’s ECG measurement

� Reliability of the latest result

� Date and time of the latest result

If user has never used the detection feature prior, the values under each label will be

displayed as None.

Figure 5.4: Detector screen
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Figure 5.5: Detector overview

Detector Toggle

Under the overview, a card (see Figure 5.6) with a button can be seen. The button

enables user to toggle the detector on and off.

Figure 5.6: Continuous AF detector toggle with two states: inactive(left), and ac-
tive(right)

5.5.3 Records Screen

In the records screen, as seen in Figure 5.7, shows a list of detected readings. There are

4 main readings: (1)NSR (2)AF (3)OA (4)TN. Reliability, date, and time are shown

for each result.

Filters

The filter feature in Figure 5.8, allows users to filter by: (1)All (2)AF (3)OA. This

attribute helps user to view crucial information. By filtering out unwanted data, the
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user will find it easier to keep track of their symptoms.

Figure 5.7: Detector records screen

Figure 5.8: Detector records filter: AF filter(left), and OA filter(right)
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Colour Coded Results

Readings are colour coded for easy viewing and identification. This allows both the

user to quickly differentiate different symptoms at a glance.

Figure 5.9: Colour coded results

5.5.4 Notifications

If an AF or OA is detected, the module will push a notification as seen on Figure 5.10.

Notifications are pushed only when result is deemed reliable. This means that if an AF

is detected but is unreliable, no notification will be pushed.

Figure 5.10: Notification feature
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Chapter 6

Conclusion

This thesis report has explained the problem statement and aim for the development of

a module for AF detection on a smartphone. Planned features are achieved. The DL

model has successfully been converted from Keras to TFJS’s Graph Model which allows

it to work in the RN environment. The model is able to make predictions locally on

a smartphone. Details surrounding the methodology, and implementation are covered.

Last but not least, a thorough evaluation of the outcomes, and experiments; which

justifies the direction taken in this thesis project.

6.1 Future Work

� Module for AF detection on a smartphone (PPG) → To allow a PPG DL algo-

rithm to be implemented on top of the current AF detection module. This can

further increase accessibility as users that cannot find or afford an ECG recording

device, can now have another option to choose from.

� Integration with Vlepis patch → To allow real patients to be able to use the

continuous AF detection module.

� Independent from Python dependencies → Being able to fully filter and process

ECG readings in RN. As discussed before, the current way is to let the signals be

partially filtered in Python before used in RN.

35



Module for Atrial Fibrillation Detection on a Smartphone Silvia

� Run in background → For continuous AF monitoring to be able to work even

outside of the app.

� Store records in server → In this case, on KIOLA. i.e., all data gathered on a

single day to be stored by the end of the day if connected to WiFi.

� Keeping TFJS up-to-date → Lookout for improvements or features that can fur-

ther improve the functionalities and compatibilities.

� Further optimisation→ Optimise the model configurations to increase prediction

speed. i.e., by reducing model size.
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Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-
lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernández del Ŕıo, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357–362, September 2020.

[Jov15] Emil Jovanov. Preliminary analysis of the use of smartwatches for lon-
gitudinal health monitoring. In 2015 37th Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society (EMBC),
pages 865–868, 2015.

[KKM+22] M. Kobel, P. Kalden, A. Michaelis, F. Markel, S. Mensch, M. Weiden-
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Silvia Module for Atrial Fibrillation Detection on a Smartphone

Appendix

A.1 Prototype

Figure A.1: Prototype. In order from top-left to bottom-right: home screen, AF
detection screen, AF detection sample list, continuous AF screen, continuous AF using
TFJS screen(inactive), continuous AF using TFJS screen(active)

A.2 Kanban Board: Trello

41



Module for Atrial Fibrillation Detection on a Smartphone Silvia

Figure A.2: Using Trello for Kanban
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